QuizKnock

アプリで記事をもっと見やすく

インストールする

カテゴリ

ログイン
PR
ひょうご観光本部

解説

それでは解説です。さまざまな解き方がありますが、ここではそのひとつを紹介します。

前ページ:【解答フォーム】自力で解きたい方はこちらへ! 以下は問題の答えです

今回は私と一緒に解いていきましょう! 点Pが正六角形の中の中途半端な位置にありますが、どのように使えばよいのでしょうか。

今回の解き方をまとめた図がこちらです。

ポイントは、正六角形を六等分する「正三角形ひとつの面積」を求めることです。

この流れに沿って問題を攻略していきましょう!

正六角形の2辺の延長線を引く

下の図のように、各点をA,B,C,Dとします。

辺ABをB側に、辺DCをC側に延長し、正六角形の外側に三角形をつくります。2本の延長線が交差した点Eとします。

正六角形の内角ひとつの大きさは120度なので、角BCE=角CBE=180-120=60度です。すると、三角形BCEすべての角の大きさが60度であるため、正三角形であることがわかります。

また正六角形には、向かい合う頂点を対角線で結んで六等分すると、各三角形が正三角形になるという性質があります。

三角形BCEの辺BCは正六角形と一辺を共有しているので、三角形BCEは、正六角形を六等分してできる正三角形と合同であることがわかります。

三角形BCEの面積を求めて6倍すれば、正六角形の面積を求めることができますね!

三角形BCEの面積を求める

次に、三角形BCEの面積を求めます。下の図のように、EとPを結ぶ線を引きます。

三角形ABPと三角形BEPは、底辺の長さと高さが等しいため、面積は等しくなります。したがって、三角形BEPの面積は14cm2となります。

同様にして、三角形CDPと三角形CEPも面積が等しいです。したがって、三角形CEPの面積は6cm2となります。

以上より、四角形BECPの面積は、三角形BEPの面積と三角形CEPの面積を足して、14+6=20cm2とわかります。

三角形BCEの面積は、四角形BECPの面積から三角形BCPの面積を引くことで求めることができます。三角形BCPの面積は8cm2なので、三角形BECの面積は、20-8=12cm2です。

三角形BCEの面積を求めることができたので、あと少しです!

正六角形は正三角形6つ分

正六角形は、正三角形BECと合同な正三角形6つで構成されています。

したがって、正六角形の面積は、12×6=72cm2となります。

答え:72cm2


三角形の性質をうまく利用できるかがポイントでした。

それではまた次の算数ノートでお会いしましょう!

「ひらめけ!算数ノート」のバックナンバーはこちらから!

【前回の算数ノートはこちら】

【あわせて読みたい】

2
Amazonのアソシエイトとして、当サイトは適格販売により収入を得ています。

関連記事

この記事を書いた人

鞠乃

芝浦工業大学建築学部に在学中の鞠乃(まりの)です。東京スカイツリーが好きです。趣味は旅行、ハロプロのライブ参戦、Jリーグ観戦、読書など。みなさんと一緒にたくさんの「楽しいから始まる学び」を体験していけたら嬉しいです。よろしくお願いします。

鞠乃の記事一覧へ